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Abstract

In complex PDE settings, the neural operator, an efficient data-driven approach that aims to
find the solution operator of PDEs, might be used. In contrast with traditional neural networks,
which learn function mapping between finite-dimensional spaces, neural operators expand this
learning to include operators between infinite-dimensional spaces. This allows for zero-shot
generalization to higher-resolution evaluations and frees the neural operator from the grid’s
resolution and size for training data. Furthermore, if we rely on Fourier spaces for our training
procedures, our solution training process will be more efficient. In comparison to conventional
numerical approaches, the Fourier neural operator has quasi-linear time complexity, allowing
it to solve PDEs much more quickly. Numerical experiments are performed on Darcy Flow as

well as Fokker-Planck equations to prove such properties of the Fourier neural operator.
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1 Introduction

Solving complicated partial differential equation systems repeatedly for various values of parameters
is a common task in the field of science and engineering. Micro-mechanics, turbulent fluxes, and
molecular dynamics are a few examples of them. Conventional solvers such as purely physics-
informed optimization learning, Finite Element Methods (FEM), and Finite Difference Methods
(FDM) suffer many disadvantages compared to data-driven methods. The traditional numerical
solvers are often inefficient because such complex systems often need fine discretization to capture
the phenomenon being modeled and have a trade-off on resolution, while many data-driven methods
hold the property of mesh independence and resolution invariance. For instance, when dealing with
inverse problems, thousands of evaluations of the forward model will be required, which complicates
the calculation, and the output resolution would be affected by the input resolution size. Thus, a
fast and efficient method is needed to solve the problem.

Hence, the neural operator, a data-driven approach that tries to find the PDEs’ solution operator
quickly, can be employed in complex PDE settings. Contrary to traditional neural networks, which
learn function mapping between spaces of finite dimensions, neural operators extend this learning
to include operators between areas of infinite dimensions. This enables zero-shot generalization to
higher-resolution evaluations, and makes the neural operator free of the resolution and size of the
grid for training data. Moreover, if we apply our training procedures in the Fourier spaces, our
solution training process will be more efficient. In comparison to conventional numerical approaches,
we observe that the Fourier neural operator has quasi-linear time complexity, making it much faster

in solving the PDEs.



Table 1: Comparison between Conventional Solvers and Data-driven Methods

Type Conventional Solvers Data-driven Methods
Advantages and e only solve one instance, ineffi- e require training data
Disadvantages cient when changing parameters, e data can be slow to generate
boundary or initial conditions e model-free, learn a family of PDE
e require an explicit form to train e black-box, data-driven
e trade-off on the resolution e some are resolution-invariant,
e slow on fine grids mesh-independent
e fast on coarse grids e slow to train, fast to evaluate
e theory is well understood e theory not well understood

1.1 Literature Review and Context

Data-driven methods directly learn the trajectory of a family of PDE through the data provided,
by means of some machine learning algorithms. Prominent examples include Graph Neural Op-
erator [15], Fourier Neural Operator [14], Physics-informed Neural Operator [16], and Adaptive
Fourier Neural Operator [10]. From a broad literature review and paper reading, we summarize
the advantages and disadvantages of conventional PDE solvers and data-driven methods, which are
shown in Table 1. However, it is worth mentioning that not all data-driven methods are resolution-
invariant and mesh-independent. Only under moderate conditions do these two properties hold.
Additionally, though data-driven, some classical neural networks map between finite-dimensional
spaces and can only train solutions within a specific discretization. Such classical neural networks

include Finite-dimensional Operators and Neural-FEM [14].

1.1.1 Finite-dimensional Operator and Neural-FEM

The finite-dimensional operator learns the mapping between two finite-dimensional Euclidean spaces
through convolutional neural networks. Since it is a finite-dimensional operator, it needs modifica-
tion of resolution and discretization according to different PDE cases to minimize the error. Thus,

it is a mesh-dependent operator [11] [26] [1] [3] [13]. As for the Neural-FEM, it directly parameter-



izes an instance of PDE using neural networks. In other words, it is not an operator, rather, it is
similar to the traditional solvers like the finite difference method, but trained by neural networks.
Although Neural-FEM is mesh-independent, Neural-FEM is actually time-consuming since it needs
to be trained for each new instance of parameters, leading to a new neural network each time.
Moreover, the approach is restricted to the settings where the underlying PDE is known [5] [18] [2]

[19] [17].

1.1.2 Fourier Transform

The Fourier transform (FT) in mathematics is a transformation that changes a function into a
form that exhibits the frequencies found in the initial function [24]. According to Li et al. [14],
since differentiation is equivalent to multiplication in the Fourier domain, the Fourier transform is
widely employed in spectral methods for solving differential equations. Fourier transforms also play

a significant role in the development of deep learning.

1.2 Contributions

In the thesis, we first conducted detailed research and analysis of the Fourier neural operator.
Generally speaking, the theoretical part of the thesis is a new and ordered illustration of the
Fourier neural operator starting from scratch. According to Li et al. [14], we started with the
graph construction, then set up the message-passing graph network, and finally built up the graph
neural operator by transforming the discrete problem into a continuous format. We then introduced
the iterative algorithm for solving the neural operator, and put such algorithm calculation in the
Fourier spaces to boost the solution speed and efficiency. Moreover, we summarized the advantages

of the Fourier neural operator such as resolution invariance, mesh independence, and quasi-linearity,
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Figure 1: The architecture of the Fourier neural operator by Li et al. [14]

and proved such properties through numerical experiments. Apart from the Darcy Flow experiments
containing three different resolutions, we also performed experiments on a brand-new instance: the
Fokker-Planck equation, by means of the Fourier neural operator. This is also an innovative part

of this thesis.

2 Theory

2.1 Problem Setting and Operators

According to Li et al. [14], the PDE operator learns a mapping between two infinite-dimensional
spaces through a finite collection of observations of input-output pairs. Let D C R? be a bounded
and open set, and A and U be separable Banach spaces of functions which take values in R?, where
d is the size of the input and output space. Then Gt: A — U is a typically non-linear map we would
like to investigate. Suppose we have N observations {a;,u;}~ ; where a; ~ u is an independently
and identically distributed sequence from the probability measure 4 supported on A. Furthermore,

it is highly likely that u; = GT(a;) is corrupted with noise. Then our goal is to approximate G by



building a parametric map:

Go: A—U, 0c0O (1)

for some finite-dimensional parameter space ©. We choose 87 € ©, the optimal parameter, then we
have G(-,07) = Gy+ ~ GT, the optimal solution. For such learning in infinite dimensions, we define
a cost-function C: U x U — R and try to find a minimizer of the problem:

min EawnlC(Gla,0), G (a)] (2)

which directly parallels the traditional finite-dimensional setting in Vapnik’s work [20]. Though we
do not prove the existence of the minimizer here, we will address this problem in test-train settings
in the numerical application section where empirical approximations to the cost are calculated.
Since the methodology is proposed in the infinite-dimensional approximation scenario, the common
set of network parameters that are defined in the infinite-dimensional setting can be implemented
into all finite-dimensional approximations as well. To summarize, we consider mappings G which
take coefficient functions of a PDE as input and then map them to solutions of the PDE, and both
input and solutions are real-valued functions on R¢ [15]. Traditionally, we calculate the solution
u € U of a PDE for a single case of the parameter a € A using solvers such as physics-informed
neural networks and Neural-FEM. However, these approaches aim at solving one instance of PDE
and are thus computationally expensive and not applicable to solving operators GT for a family of
equations from the data. In contrast, the proposed method in our paper designed for solving the

operator can directly approximate the operator and is thus much more efficient and faster [14].



Since our data a; and u; are generally functions, we consider them as point-wise values to
deal with them numerically. To illustrate, let Px = {z1,...,#x} C D be a K-point discretization
(in applied math, discretization is the conversion of continuous equations, models, variables, and
functions into discrete counterparts) of the domain D. Suppose we have a finite collection of input-
output value pairs denoted by a;|p.,ui|p, € RX. In the following subsection, a kernel-inspired
graph neural network architecture trained on the discretized data pairs is brought up to generate
the solution u(z) for any € D given a new input parameter a ~ . This shows that the method is
independent of the discretization P . This is a good property of operators since it allows a transfer
of solutions between different discretization sizes and grid geometries [15]. Apart from that, answers
produced by operators are mesh-independent and resolution-invariant, and the error is independent

of the input resolution. We will discuss such properties in later sections.

2.2 Graph Kernel Network

Partial differential equations govern the law of a broad range of important engineering problems and
physical phenomena. Recent decades witness significant developments in formulating and solving
PDEs in many scientific disciplines. However, according to Li et al. [15], two significant challenges
remain. Firstly, formulating the underlying partial differential equations for the specific scientific
phenomenon usually demands intensive prior knowledge in the corresponding field; secondly, solv-
ing complex non-linear PDE systems is computationally difficult. Luckily, the emergence of neural
networks contributes to leveraging the increasing volume of available data in both of these difficul-

ties, and they should be further studied to adapt to mappings between function spaces.

We first propose a graph kernel neural network to help to figure out the operator formulated in



section 2.1. We consider PDEs of the form:

u(z) =0, xe€dD (4)

with solution u: D — R and parameter a: D — R. L, is a differential operator depending on the
parameter a € A, and f is some fixed function living within a proper function space following the
structure of A. For instance, £, = —div(aV-) is the elliptic operator [8]. Under general conditions

on L, [7], we define the Green’s function G : D x D — R as the unique solution to the problem:
L.G(z,-) =6, (5)

where d, is the delta measure on R? centered at . Since G is dependent on parameter a, we denote

it as G,. The solution to equations (3) and (4) can be expressed as [15]:
ue) = [ Gulei) i)y )

Proof. Lou(z) = [1(LaG(x,)) (W) f(y)dy = [ 6=(v)f(y)dy = f(x) O

Since Green’s function is continuous at points x # y, the equation could be solved through
the neural network. However, we will not discuss the case when x = y. Indeed, our goal is to
approximate (6) using some proper methods, which is the core of our research topic. Thus, to
approximate the solution, we construct an operator using the well-known graph construction, and

such an operator is called the graph neural operator.



2.2.1 Graph Construction

According to Li et al. [15], a graph connecting the physical domain D of the PDE is designed to
foster the realization of the neural operator. Here, the K discretized spatial locations are chosen
to be the graph nodes. For simplicity, we assume working on a standard uniform mesh, but there
are also cases like random mesh points according to the provided data. The edge connectivity is
chosen with respect to the integration measure, which is the Lebesgue measure restricted to a ball
B(x,7). We define the neighborhood set as N(z), and each node € R? is connected to nodes
lying within B(x,r) (a vertex S is a neighbor of a vertex ) in a graph G if there is an edge be-

tween them). For each neighbor y € N(x), the edge feature is assigned as e(z, y) = (z,y, a(z), a(y)).

Based on the graph, we further construct a message-passing graph network, which comprises
the edge features [9]. Assuming we construct the graph on the spatial domain D of the PDE, the
aggregation of messages can be used to represent the kernel integration, which is the key part of
our proposed neural operator. To be specific, given the node features v;(z) € R™, where n is the
dimension of one layer, edge features e(z,y) € R™ and a graph H, the message passing neural

network with averaging aggregation is expressed as:

vig1(z) = o(Wor(2) + Y ralelz,y)u(y) (7)

where o : R — R is a non-linear activation function applied element-wise, W : R™ — R” is a linear
transformation (to be learned from data), N(z) is the neighborhood of x according to the graph,
and the kernel k, : R2@+1) — R™*" with the parameter ¢ is going to be modeled using neural

network and trained from the data. k4(e(z,y)) is a neural network taking edge features as input
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and a matrix in R™*" as output. Moreover, e(z,y) = (z,y,a(z),a(y)) € R34+ [15], where x and

y are of dimension d, a(x) and a(y) are of dimension 1.

2.2.2 Graph Neural Operator

To construct an algorithmic framework of the neural operator, we aim to transform the discrete
summation in equation (7) into a continuous one without the loss of generality. Thus, follow-
ing equation (6) and the graph construction in equation (7), we introduce the following iterative

architecture for t =0, ..., — 1:

vey1(2) = U(th(w)+/Dﬂqs(w,y,a(w),a(y))vt(y)%(dy)) (8)

where the notation and constraints are the same as those in equation (7), and v, is a fixed Borel mea-
sure for each x in D [15]. The iteration follows vy — vy — --- — vp, where v; for j =0,1,...,T—1
is a sequence of functions, each of them taking values in R™. This neural operator is called a ” Graph

Neural Operator”.

According to Li et al. [14], the initialization vo(z) to equation (6) can be viewed as the initial
input we make for the solution u(z). We first begin with the coefficient a(z) itself as well as the
position in physical space x. This forms a vector field of dimension (d + 1) and is then lifted to a
n-dimensional vector field by a local transformation P which is often parameterized by a shallow
fully-connected neural network. The representation of the ”dimension-lifting” process is written as
vo(z) = P(a(x)), and the operation could be viewed as the first layer of the neural network. Then
this functions as an initialization part to the kernel neural network, and we apply T iterations of

updates v; — vy41 defined above. In the last layer, we project vr back to the scalar field of interest

11



using another neural network layer, which is also a local transformation Q : R” — R4+, The
” dimension-lowering” process is expressed as u(x) = Q(vr(z)). To summarize, in each iteration,
the update vy — v;41 contains a (non-local) neural network x parameterized by ¢ € © and a non-

linear local activation function o.

Example: For instance, we consider the problem of approximation of the second-order elliptic

PDE and transform the problem using the graph neural operator:

-V (a(z)Vu(z)) = f(z), €D (9)

u(r) =0, ze€dD (10)

for some bounded, open set D C R? and a parameter function f(z). For a given a € A =
L*°(D;RT) N L%(D;R*), the equations above have a unique weak solution u € U = H}(D;R) [6].
As a result, we could define the solution operator G as the map from a to u. Then we can apply
the proposed neural operator iterations to this example. Additionally, we apply the initialization
(z,a(x)) with a Gaussian smoothed version of the coefficients a.(z) and their gradient Va.(z)
because of the smoothing effect of the inverse elliptic operator in the equation (9) (10) regarding
the input data a (and actually f when we consider this as input in experiments). Thus, we initialize

the problem with a 2(d + 1)-dimensional vector field. And the PDE problem is thus formulated

12



using the graph neural network as follows [15]:

vo(z) = P(z,a(x), ac(r), Vac(r)) + p (11)
ve1 = o(Woy(z) + ” )f%(w,y,a(w),a(y))vt(y)vw(dy)) (12)
u(z) = Qur(z) +q (13)

where P : R24+D 5 R™ p € R™ v (x) € R”, Q € R'™™ and ¢ € R. The integration in equation
(12) can be seen as approximated by a Monte-Carlo sum (the basic idea behind Monte Carlo sum
is to approximate the integral of a function f(z) over a domain D by generating a large number of
random points within the domain and using these points to estimate the integral) via a message-

passing graph network with edge feature (z,y, a(x), a(y)) in equation (7).

Remark: Gaussian smoothing, also known as Gaussian blur, is to blur an image by a Gaussian
function. It is widely used in graphics software, to reduce image noise and reduce the image’s high-
frequency components [25]. In the paper, the Gaussian smoothing is conducted with a centered
isotropic Gaussian with variance 5, and the Borel measure v, is selected as the Lebesgue measure

supported on a ball of center x and radius r.

2.3 Fourier Neural Operator

Fast Fourier Transform (FFT) is an algorithm that computes the discrete Fourier transform (DFT)
of a sequence, or its inverse, converting a signal from its original domain to a representation in
the frequency domain and vice versa. By factorizing the discrete Fourier transform matrix into a

product of sparse components, an FFT quickly computes the transformations. The most widely
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used FF'T algorithms are based on the factorization of N, where IV is the data size, and in the fact
that e=2™1/N is an N-th primitive root of unity, thus could be applied to analogous transforms over
any finite field. Consequently, FF'T manages to reduce the complexity of computing the DFT matrix
from O(N?) to O(NlogN), which is quasi-linearity [22]. Let g, ..., 2y_1 be complex numbers, the

FFT is defined as:

N—-1
Xp= Y ape @™/N k=0, N-1

n=0

27/N is a primitive N-th root of 1. Evaluating this definition directly requires O(N?)

where e
operations since there are N outputs X, and each output requires a sum of N terms. An FFT
is any method that can compute the same results in O(NlogN) operations. Apart from that, by
calculating the different frequency components in time-varying signals, FFT is able to reconstruct
such signals from a set of frequency components, thus reducing the time complexity. Examples of

FFT algorithms include Cooley-Tukey algorithm, Prime-factor FFT algorithm, and Bruun’s FFT

algorithm [22].

Though the graph neural operator is good at approximating the solutions to PDE systems, the
process of training the kernel x4 and the linear transformation W directly from the data provided is
time-consuming and complicated due to the large size of the training parameters. So based on the
graph neural network and the graph neural operator, we introduce the Fourier neural operator. We
parameterize k4 directly in Fourier space and use the Fast Fourier Transform (FFT) to compute the
kernel efficiently. According to Li et al. [14], we choose K(a; ¢) to be a kernel integral transformation

parameterized by a neural network and define the kernel integral operator mapping in equations

14



(8) and (12) by:

mwwwmmﬁaénAa%amﬂ@mmw@,vxeD (14)

where 14 is the neural network parameterized by ¢ € ©,. And the neural operator iterative updates

could be written as:
vir1(x) = o(Wo(z) + (K(a; d)v)(x)), Va e D (15)

Our task is to train (14) using FFT at a high speed in the Fourier space. According to Li et
al. [14], we first propose replacing the kernel integral operator in (14) with a convolution operator
defined in Fourier space. Let F denote the Fourier transform of a function f : D — R"™ and F~!

its inverse. Then:

wmm=LﬁMf%Wma<r%mw=4¢mﬁmﬂ% (16)

for j = 1,...,n, where ¢ = /-1 is the imaginary unit [14]. We assume r4(z,y, a(x),a(y)) =

kg(x —y) in (14) and then apply the convolution theorem below. We get:
(K(a; p)ve)(w) = F~H(F(kg) - F(v))(z), VaeD (17)

As a consequence, we propose to parameterize k4 in Fourier space directly.

15



Definition 1 (Fourier integral operator): We define the Fourier integral operator as:
(K(@)ve)(x) = F~H(Rg - (Fur))(x), Vo eD (18)

where Ry is the Fourier transform of a periodic function k : D — R™ ™ which is parameterized by

¢ € O.

Definition 2 (Convolution theorem): The convolution theorem is a fundamental result in math-
ematics and signal processing. Under suitable conditions, the Fourier transform of a convolution
of two functions equals to the pointwise product of their Fourier transforms. Let f and g be two
functions in L*(R), the space of integrable functions on the real line. Then the Fourier transform of

f and g are defined respectively as:

F(w):/f(x)e*i“””dx (19)
Gw) = /g(x)efi‘”dx (20)

for all w in R. Then, the convolution theorem states that the Fourier transform of the convolution

f * g is given by the pointwise product of the Fourier transforms F and G:

for all w in R [21].
According to Li et al. [14], for frequency mode k € D, we have (Fuv,)(k) € C" and Ry(k) € C™*™.

Since k has a Fourier series expansion as we assume the & is periodic, we can work with the discrete

16



modes k € Z?. We first choose a finite-dimensional parameterization by truncating the Fourier

series at a maximal number of modes k., and we define the set 7y, . = {k € Z¢ : |k;| <
Emag,j,for ¢ = 1,---,d}. Thus we directly parameterize R4 as a complex-valued tensor of size
(kmaz X n X n) which contains a collection of truncated Fourier modes. Due to the real-valued &,
we impose conjugate symmetry and notice that the set Zj . is not the canonical choice for the
low-frequency modes of v;. Actually, we often define the low-frequency modes by placing an upper
bound on the /; norm of k € Z?%. To make the calculations and implementation more quickly, we
choose Zy,, . as defined above.

In such a discrete mode, we assume the domain D is discretized with N € N points, then we
obtain v; € R¥*" and F(vy) € CV*". Since we convolve v; using a function that only has kqq
Fourier modes, we just simply truncate the higher modes to get F(v;) € CFmazX"_ This makes the

training more efficient and fast. Then we multiply F(v;) using the weight tensor R € Ckmazxnxn

and obtain [14]:

(R (F(vr))k,1 = Z Ry 13 (F(ve) )k, j (22)

where k = 1,--+ [ kpmaz, 7 = 1,--- ,n. Then F could be replaced by the Fast Fourier Transform
when the discretization is uniform with resolution s; x - - - x sq = N to boost speed. For f € RV*n,

k= (ki, - ,kq) € Zs, X -+ X Ls,, and & = (z1, -+ ,x4) € D, the Fast Fourier Transform F and

17



its inverse F ! are expressed as follows:

s1—1 sa—1 zjk;

EME) =33 filarzg)e T (23)

w1:0 ZEdIO

s1—1 sqa—1
L d zikj

E @)=Y 3 Ak ke (24)

k1=0 kqa=0

where [ = 1,--- ,n. In this scenario, the set of truncated modes becomes:

Zk = {(k17 7kd) S Zsl X - X st“iij S kmaa:,j or Sj —kj S kmax,jv fOI"j: ]., 7d} (25)

max

R is treated like a (s1 X -+ X 84 X n X n)-sized tensor when it is implemented, and according to

Li et al. [14], the above definition of Z is consistent with the ”corners” of R, allowing for the

matrix-vector multiplication to produce a simple parallel implementation of equation (22). Via real
experiments, we select kp,q, ; = 12 as the ideal value, resulting in k0, = 12¢ channel parameters
that are effective for all the scenarios we want. In practice, we build the neural network consist-
ing of multiple blocks which combine spectral convolution with regular linear convolution. The
convolution in Fourier space filters out higher-order oscillations in the solution, while the linear
convolution learns local correlations. We set four layers and two input channels, and in each iter-

ation, we compute loss and gradients and update model parameters using the stochastic descent

gradient update rule [4].

Through the detailed analysis of the Fourier neural operator, we conclude the several major

features of FNO as below:

1. Invariance to discretization: The Fourier layer can train and evaluate functions that

18



are discretized in an arbitrary way. According to Li et al. [14], solving the functions in

2mi(z,k) wwhich are well-defined

the physical space means directly projecting on the basis e
everywhere on R¢, as parameters are learned directly in Fourier spaces. This leads to ”zero-
shot super-resolution” (zero-shot super-resolution is a type of image super-resolution that
aims to enhance the resolution of an image without any specific training data for the specific
image) and the formulation has a consistent (almost the same) error at any resolution of

inputs and outputs. In comparison, other neural-network-based methods such as CNN have

an error growing along with the resolution.

. Invariance to resolution: For some resolution-invariant operators, they have consistent
error rates among diverse resolutions and are independent of the ways its data is discretized
as long as all relevant information is resolved. Such operators also fulfill zero-shot super-
resolution. In contrast, the traditional PDE solvers such as FEM and FDM only solve a

single case of function each time and thus the error decreases as the resolution increases [14].

. Parameterizations of R: According to Li et al. [14], R could be generally defined to depend
on (Fa) to parallel (14). Indeed we can define Ry : Z% x R — R™ ™ as a parametric function
that maps (k, (Fa)(k)) to the values of appropriate Fourier modes. In their experiments, they
observed both linear and neural network parameterizations of R4, and they conclude that
the linear parameterization and the previously described direct parameterization have similar
performance. However, the neural networks exhibit worse performances than them, resulting

from the discrete structure of the space Z?.

. Quasi-linear complexity: Since the weight tensor R contains k., < N modes, the in-
ner multiplication only has O(knq.) time complexity. Consequently, the computational costs

mainly depend on the computation of the Fourier transform F(v;) and its inverse, thus fol-
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lowing the time complexity of FF'T, O(NlogN). In general cases, the Fourier transforms have
complexity O(N?), however, since we truncate the modes, the complexity is then O(Nkqz) in
our cases [14]. To summarize, under uniform discretization cases, the Fast Fourier Transform

here usually has complexity O(NlogN), which is very fast and efficient.

3 Numerical Experiments

3.1 Darcy Flow
3.1.1 Darcy Flow Problem Formulation

Darcy flow typically represents the flow of a fluid through a porous medium, such as groundwater
through soil or oil through rock. Flow data usually consists of measurements of pressure, velocity,
or other properties at different points in the medium, which are then used to model the flow.
The Darcy flow partial differential equation is a mathematical expression that describes the flow
of a fluid through a porous medium under steady-state conditions. The equation is based on the
principle that the flow velocity of a fluid through a porous medium is proportional to the pressure
gradient, and inversely proportional to the viscosity and the porosity of the medium. It is a type
of elliptic PDE that involves the Laplace operator, and we now consider the steady-state of the 2-d

Darcy Flow equation on the unit box which is the second order, linear, elliptic PDE:

=V (a(2)Vu(z)) = f(z) = €(0,1)* (26)

u(z) =0 x € 9(0,1)2 (27)
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with a Dirichlet boundary where a € L°°((0,1)?; R.) is the diffusion coefficient and f € L?((0,1)%;R)
is the forcing function. We are trying to learn the operator mapping the diffusion coefficient to the

solution, Gt : L>((0,1)%R,) — H((0,1)%;R,) defined by a ~ u [14].

3.1.2 Numerical Experiments for Darcy Flow

We generate the Darcy Flow datasets through traditional solvers. The data consists of grayscale
images that represent the pressure field of the fluid flow through a porous medium. Each image in
the data represents a 2-d slice through the medium, with darker areas indicating lower pressure and
lighter areas indicating higher pressure. Each dataset is loaded as a 3-d tensor. The first dimension
is the sample index, and the rest of the indices are the discretization. In our experiments, we
generate 1000 x 16 x 16 (16 x 16 resolution), 1000 x 32 x 32 (32 x 32 resolution), and 1000 x 64 x 64
(64 x 64 resolution) Darcy flow tensors to train the operator, and then test our operators on both
16 x 16 and 32 x 32 resolutions of 50 samples (same). In the training and testing process, the data
we are using is the sample of coefficient-value pairs. The coefficients are samples of mesh data in a
Gaussian random field on [0, 1]2 with zero mean and covariance operator C' = (—A+72)(=%) where
A is the Laplacian with zero Neumann boundary conditions, and « and 7 control smoothness (the
bigger they are, the smoother the function). Then we derive the value of the PDE by solving the
equation —d(a(z)*dp) = f(x). The input data Figure 2 and Figure 3 and operator training results
Figure 4 and Figure 5 for both the 16 x 16 and 32 x 32 resolutions are shown below. We could
find that the training results are close to the ground truth, with average loss 1.1172, training error
0.0223 and average loss 1.1729, training error 0.0235 respectively, and they are almost close to each
other. This phenomenon lays a solid foundation for the resolution error invariance property.

Remark: The Figure 2 and Figure 3 in the first line are data after taking log function to ensure
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Figure 2: Input data of 16 x 16 resolutions: left:  Figure 3: Input data of 32 x 32 resolutions: left:
coefficient; right: value coefficient; right: value

Inputs, ground-truth output and prediction. Inputs, ground-truth output and prediction.

Input x Ground-truth y Model prediction

Model prediction

Ground-truth y

Input x

Figure 4: Testing result of training the operator  Figure 5: Testing result of training the operator
using 16 x 16 resolutions (Gaussian) data using 32 x 32 resolutions (Gaussian) data
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Figure 6: Training input for 16 x 16 resolutions
(Gaussian)

Visualizing one input sample
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Figure 7: Training input for 32 x 32 resolutions
(Gaussian)

ellipticity; the figures in the second line are data after thresholding to ensure ellipticity.

Aside from testing on the original Gaussian field, we can test on other datasets with a different
structure. Similarly, the input training data is the same as the above, which can be displayed in
Figure 6 and Figure 7. However, the testing set is no longer random Gaussian coefficient data, and
the testing results from nine individual experiments (16 x 16, 32 x 32 and 64 x 64 resolutions) are
shown in Figures 8 9 10 11 12 13 14 15 16. The experiments on the first line are three operators
trained on the same 16 x 16 resolution data, while the experiments on the second line are three
operators trained on the same 32 x 32 resolution data, and the same for 64 x 64 resolution data
on the third line. All of them are tested on the same testing data, and their relevant average loss,
training error, and training time are reflected in the table 3.1.2, to illustrate some properties of

Fourier neural operator.
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Table 3.1.2: Training statistics for Darcy flow experiments
Resolution Average Loss Training Error Training Time (s)
16 x 16 0.9870 0.0197 3.57
16 x 16 1.1531 0.0231 3.99
16 x 16 1.0098 0.0202 3.62
32 x 32 1.0440 0.0209 7.72
32 x 32 1.0428 0.0209 7.64
32 x 32 0.9268 0.0185 7.60
64 x 64 1.1056 0.0221 25.30
64 x 64 1.1160 0.0223 25.28
64 x 64 1.2202 0.0244 25.12

From Table 3.1.2, we can find that the training error and average loss are nearly the same for
different resolutions, which proves that the resolution-invariant operator has consistent error rates
among different resolutions. Additionally, we plot the training time for different input resolutions
with the same big O notation constant C. We find that rather than increasing quadratically (16 x 16
resolution to 32 x 32 resolution, 32 x 32 resolution to 64 x 64 resolution), the training time follows
quasi-linear complexity, in other words, O(NlogN). This property is also reflected in Figure 17. The
numerical experiments demonstrate such properties of Fourier neural operators. In the future, we

will train more examples with diverse resolutions to better prove the quasi-linear time complexity.

25



Training time comparison

300 4 —— Quasi-linear
—— Quadratic
» Experiment data
250
= 200
@
E
=1
o 150 A
=4
E
il
F 100 A
50 1
0
T T

T
10 20 30 40 50 60 70
Resolution (pixel)

Figure 17: Training time for the Darcy Flow Model
3.2 Fokker-Planck (Kolmogorov Forward) Equation
3.2.1 Fokker-Planck Problem Formulation

The Fokker-Planck equation, also known as the Kolmogorov forward equation, is a partial differen-
tial equation that describes the time evolution of a probability density function (PDF) associated
with a stochastic process. It was first introduced by Adriaan Fokker and Max Planck in the early

20th century to describe the diffusion of Brownian particles under the influence of random forces [23].

The Fokker-Planck equation is typically written in the form:

OP(x,t) D 19
5 = o [a(x,t)P(x,t)] + 2922 [b(z, 1) P(z, )] (28)

where P(x,t) is the probability density function of the stochastic process at time ¢, a(z,t) is the

drift coefficient which describes the average rate of change of the process at location = and time ¢,
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and b(zx,t) is the diffusion coefficient which describes the randomness of the process.

The Fokker-Planck equation is a powerful tool in studying stochastic processes as it allows us
to calculate the evolution of the probability density function over time. In particular, it is often
used to model diffusion processes, such as the diffusion of molecules in a solution, and to study
the behavior of stochastic systems, such as the dynamics of financial markets or the behavior of

biological systems.

3.2.2 Numerical Experiments for Fokker-Planck

Here we consider the 1-d Fokker Planck equation problem on a unit torus,

ot Oz 2 0z2

OP,t) __OP@t) [ DIP@D) o) re(01] (29)

u(z,0) = up(x), =€ (0,1) (30)
with periodic boundary conditions where ug € L2,,.((0,1); R) is the initial condition. a is the drift
coefficient and b is the diffusion coefficient. In our numerical experiments, we set them as constant
to simplify the problem. We consider two settings: a = 0.005 and b = 0.002, and a = 0.5 and
b = 0.2, respectively. We aim to learn the operator mapping the initial condition to the solution at
the time one, GT: L2,,((0,1);R) — H},,.((0,1); R) defined by ug > u(-, 1) for any r > 0.

In the experiment, the initial condition wg(z) is generated with respect to ug ~ p and g =
N(0,625(—V + 257)~%) with periodic boundary conditions (truncate between zero and one). We
solve the linear part of the equation (we only have the linear part as well) using the split-step

method in the Fourier space. We calculate the equation value on a spatial mesh with resolution
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213 = 8192. We then train the Fourier neural operator using this dataset of size 2048 (initial and
final value pairs) in 20 epochs and test the operator on other different resolutions [4]. Figures 18
19 20 21 are the results of our training and testing of the Fokker-Planck equation with a learning
rate 1 x 1073 (the testing results have been scaled to have summation 1). Generally, during the
training process, they have a training loss and validation loss around 0.01, and a validation mean
square error around 1 x 10~7, which shows that the Fourier neural operator being trained is a good
solver of the proposed Fokker-Planck equation and a good predictor of the input data. Though
the testing case in Figure 19 seems not perfect, the loss is actually small due to the scaling of the
Y-axis. Additionally, Figure 22 and Figure 23 are testing examples that compare the change from
the initial stage to the terminal time between large drift and diffusion coefficient and small drift and
diffusion coefficient. It is obvious that a small drift and diffusion coefficient leads to small change
during the whole process, while a large drift and diffusion coefficient leads to a dramatic change
from ¢ = 0 to t = 1, moving and stretching the whole shape in the process.

One drawback of the self-designed experiment is that a tiny part of the output values of the
Fokker-Planck equation may be negative or over 1, which is invalid as the values should be the
probability density function. According to Harrison [12], when we use traditional solvers like the
finite difference method to solve the equation to generate experiment data, it produces erroneous
oscillations and negative values if the drift is large compared with the diffusion. However, Harrison
also mentions that small negative values could be tolerated in some cases. As a result, the training
data we generated using the software may not be reliable enough, and we will work further to solve

the problem in later research.
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Figure 18: The testing output and ground truth
of FP equation when a=0.005 and b=0.002

Epoch: 20, Elapsed: 00:04:49

o8t

Loss

0.4 |
|

W’

A

4, ,

. LR

o 100 200 300 400 500 600 700 800 900
Iteration

1000

Figure 20: The training loss for FP equation
when a=0.005 and b=0.002

55 x10% a=0.005, b=0.002
—U,
—— U, prediction
U, ground truth
2

05

0 1000 2000 3000 4000 5000 6000 7000
X

8000 9000

Figure 22: Comparison of the initial stage and
terminal time when a=0.005 and b=0.002

29

<107
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4 Discussion and Conclusion

In conclusion, in the thesis, we first conducted detailed research and analysis of the Fourier neural
operator. Generally speaking, the theoretical part of the thesis is a new and ordered illustration
of the Fourier neural operator starting from scratch. We started with the graph construction,
then set up the message-passing graph network, and finally built up the graph neural operator
by transforming the discrete problem into a continuous format. We then introduced the iterative
algorithm for solving the neural operator, and put such algorithm calculation in the Fourier spaces
to boost the solution speed and efficiency. Moreover, we summarized the advantages of the Fourier
neural operator such as resolution invariance, mesh independence, and quasi-linearity, and proved
such properties through numerical experiments. Apart from the Darcy Flow experiments containing
three different resolutions, we also performed experiments on a brand-new instance: the Fokker-
Planck equation, by means of the Fourier neural operator. This is also the innovation part of the
thesis. Our experiments proved that the Fourier neural operator trained is a good solver of the

proposed PDEs, and has numerous advantages compared with other solvers.
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